A Revenge of Space on Matter?
A summary of Einstein's address - University of Nottingham, 6th June 1930
http://www.nottingham.ac.uk/~ppzdt/Einstein/blackboard.html
Other reference: Science 71, 608-610 (1939)

In this address Einstein traced scientific thought from the time when rigid material bodies were the primary concept, and when the idea of space was derived by abstracting from matter. He said that Faraday and Maxwell did not have the courage to assert that space was a real thing, and so they invented the material ether. However the material ether later had to be discarded, and Einstein indicated that in spite of this he maintained that space has a real significance. Space with its metric structure was the real thing, whereas matter in all its forms was to be derived from the metric structure of space. Matter was to be regarded as only of secondary reality. So far, by finding a definite metric structure of space it had been possible to understand why material bodies had weight and moved in the way we see them in ordinary life.

"Space," said Einstein at one point, "is a consideration of first importance, and matter is only of secondary interest. Space is the primary phenomena and matter is derived from it as a secondary result. Space is now turning around and eating up matter. Space is taking its revenge so to speak, although that is only a pious wish. Relativity has advanced the uniformity of view of the physical world picture. It has formed a bridge between geometry and physics."

There were, however, other phenomena - those of radiation - which did not emerge from the metrical structure (regular order) that was obtained in the General Theory of Relativity. Therefore Einstein's great goal, the uniformity of the physical picture of the world, had not yet been achieved. This had led him to look for a general metric-structure of space which would account for all phenomena, by adding further terms to the metric structure of space. This still left the interpretation of physical laws in a dual state.

The new idea that had occurred to him, and on which he had been working, was that if you consider two elements in space (usually they are compared only with regard to size) a further element came into it which might give a clue. That was, that they could also be compared as to their direction. This idea had come to him during a serious illness two years before.

Einstein acknowledged this difficulty with finding a single equation to represent all phenomena. Although his colleagues regarded his view as a particular craze, and he felt he did not have their support in it, he had faith in the path along which he was proceeding. "Although my theory is not yet quite finished," he added, "I have evidence - so far as I can judge - that the end is near." This would complete one great portion of the work that had occupied physicists for the last centuries since Newton. Beyond this, however, he also wished to derive the elementary particles of matter, namely, protons and electrons from the modified equations.